skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a multi-modal trajectory generation and selection algorithm for real-world mapless outdoor navigation in human-centered environments. Such environments contain rich features like crosswalks, grass, and curbs, which are easily interpretable by humans, but not by mobile robots. We aim to compute suitable trajectories that (1) satisfy the environment-specific traversability constraints and (2) generate human-like paths while navigating on crosswalks, sidewalks, etc. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model enhanced with traversability constraints to generate multiple candidate trajectories for global navigation. We develop a visual prompting approach and leverage the Visual Language Model's (VLM) zero-shot ability of semantic understanding and logical reasoning to choose the best trajectory given the contextual information about the task. We evaluate our method in various outdoor scenes with wheeled robots and compare the performance with other global navigation algorithms. In practice, we observe an average improvement of 20.81% in satisfying traversability constraints and 28.51% in terms of human-like navigation in four different outdoor navigation scenarios. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  2. We propose VLM-Social-Nav, a novel Vision-Language Model (VLM) based navigation approach to compute a robot's motion in human-centered environments. Our goal is to make real-time decisions on robot actions that are socially compliant with human expectations. We utilize a perception model to detect important social entities and prompt a VLM to generate guidance for socially compliant robot behavior. VLM-Social-Nav uses a VLM-based scoring module that computes a cost term that ensures socially appropriate and effective robot actions generated by the underlying planner. Our overall approach reduces reliance on large training datasets and enhances adaptability in decision-making. In practice, it results in improved socially compliant navigation in human-shared environments. We demonstrate and evaluate our system in four different real-world social navigation scenarios with a Turtlebot robot. We observe at least 27.38% improvement in the average success rate and 19.05% improvement in the average collision rate in the four social navigation scenarios. Our user study score shows that VLM-Social-Nav generates the most socially compliant navigation behavior. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. We present a novel end-to-end diffusion-based trajectory generation method, DTG, for mapless global navigation in challenging outdoor scenarios with occlusions and unstructured off-road features like grass, buildings, bushes, etc. Given a distant goal, our approach computes a trajectory that satisfies the following goals: (1) minimize the travel distance to the goal; (2) maximize the traversability by choosing paths that do not lie in undesirable areas. Specifically, we present a novel Conditional RNN(CRNN) for diffusion models to efficiently generate trajectories. Furthermore, we propose an adaptive training method that ensures that the diffusion model generates more traversable trajectories. We evaluate our methods in various outdoor scenes and compare the performance with other global navigation algorithms on a Husky robot. In practice, we observe at least a 15% improvement in traveling distance and around a 7% improvement in traversability. Video and Code: https://github.com/jingGM/DTG.git. 
    more » « less
  4. We present a novel learning-based trajectory generation algorithm for outdoor robot navigation. Our goal is to compute collision-free paths that also satisfy the environment-specific traversability constraints. Our approach is designed for global planning using limited onboard robot perception in mapless environments while ensuring comprehensive coverage of all traversable directions. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model that is enhanced with traversability constraints and an optimization formulation used for the coverage. We highlight the benefits of our approach over state-of-the-art trajectory generation approaches and demonstrate its performance in challenging and large outdoor environments, including around buildings, across intersections, along trails, and off-road terrain, using a Clearpath Husky and a Boston Dynamics Spot robot. In practice, our approach results in a 6% improvement in coverage of traversable areas and an 89% reduction in trajectory portions residing in non-traversable regions. Our video is here: https://youtu.be/3eJ2soAzXnU 
    more » « less
  5. Abstract Outbreaks of zoonotic diseases are accelerating at an unprecedented rate in the current era of globalization, with substantial impacts on the global economy, public health, and sustainability. Alien species invasions have been hypothesized to be important to zoonotic diseases by introducing both existing and novel pathogens to invaded ranges. However, few studies have evaluated the generality of alien species facilitating zoonoses across multiple host and parasite taxa worldwide. Here, we simultaneously quantify the role of 795 established alien hosts on the 10,473 zoonosis events across the globe since the 14 th century. We observe an average of ~5.9 zoonoses per alien zoonotic host. After accounting for species-, disease-, and geographic-level sampling biases, spatial autocorrelation, and the lack of independence of zoonosis events, we find that the number of zoonosis events increase with the richness of alien zoonotic hosts, both across space and through time. We also detect positive associations between the number of zoonosis events per unit space and climate change, land-use change, biodiversity loss, human population density, and PubMed citations. These findings suggest that alien host introductions have likely contributed to zoonosis emergences throughout recent history and that minimizing future zoonotic host species introductions could have global health benefits. 
    more » « less
  6. null (Ed.)